ENVIRONMENTAL HAZARD: This product is toxic to fish and aquatic invertebrates. Do not discharge effluent containing this product into lakes, streams, ponds, estuaries, oceans, or other waters unless in accordance with the requirements of a National Pollutant Discharge Elimination System (NPDES) permit and the permitting authority has been notified in writing prior to discharge. Do not discharge effluent containing this product to sewer systems without previously notifying the local sewage treatment plant authority. For guidance contact your State Water Board or Regional Office of the EPA.

Pesticide Storage: Do not contaminate water, food, or feed by leaking or disposing of containers. Do not apply this product in a way that will contact workers or other persons. Do not allow pesticide wastes to accumulate. Imidacloprid and related substances are acutely hazardous. Improper disposal of excess pesticide or residues is a violation of Federal law. If these wastes cannot be disposed of by using according to label instructions, contact your State Pesticide or Environmental Control Agency or the Hazardous Waste representative at the nearest EPA Regional Office for guidance.

CONTAINER DISPOSAL: Nonrefillable container: Do not reutilize or refill this container. Triple rinse or progenate the container (or equivalent) promptly after emptying. Then offer for recycling or reconditioning, or if not commercially marketable, dispose of in sanitary landfill, or by procedures approved by state and local authorities.

GENERAL: CONSULT FEDERAL, STATE, OR LOCAL DISPOSAL AUTHORITIES FOR APPROVED ALTERNATIVE PROCEDURES.

CONDITIONS OF SALE AND WARRANTY BUCKMAN LABORATORIES, INC. warrants that this product conforms to its chemical description and is reasonably fit for the purpose stated on the label only when used in accordance with label directions and as defined the directions for use on this label. BUCKMAN LABORATORIES, INC., MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED, OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE. Handling, storage, and use of the product by Buyer or User are beyond the control of BUCKMAN LABORATORIES, INC., and Seller. Risks such as inefficacy or otherwise unintended consequences resulting from, but not limited to, failure to follow the instructions, or failure of any materials or parts supplied by Buyer or User. TO THE EXTENT PERMITTED BY LAW, BUCKMAN LABORATORIES, INC. DISCLAIM ANY AND ALL WARRANTIES AND Liabilities OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE. Handling, storage, and use of the product by Buyer or User. TO THE EXTENT PERMITTED BY LAW, BUCKMAN LABORATORIES, INC. SHALL BE LIABLE FOR CONSEQUENTIAL, SPECIAL, OR INDIRECT DAMAGES RESULTING FROM THE BUYING, STORING, STORAGE OR USE OF THIS PRODUCT.

Buckman LABORATORIES, INC.
1266 N. McLean Blvd
Memphis, Tennessee 38118, U.S.A.
(901) 285-2500 or 1-800-282-5626

PREFERRED method is adopted, add 2.5 to 9 ounces of BUSAN 1264 for each ton of paper produced per day as a single shock dose, the actual quantity to be determined by trial and error. Because this ensures that a high concentration of BUSAN 1264 is present in the system for several hours. If a slime control agent is added by continuous methods over periods of several hours, its concentration in the system at all times is low. This can lead to the development of resistant organisms, which is less likely to occur when the shock dosing method is used.

If this preferred method is adopted, add 2.5 to 9 ounces of BUSAN 1264 for each ton of paper produced per day as a single shock dose, the actual quantity to be determined by trial and error. Because this ensures that a high concentration of BUSAN 124 to the bios system during the curing operation or treat hides or skins with an appropriately diluted aqueous solution during other portions of the processing operation. The specific use rate and contact time needed to control microbial attack will depend on the degree of decomposition of the hides or skins prior to treatment.

Use should remove PPE immediately after handling this product. Wash the outside of gloves before removing. As soon as possible wash thoroughly and clean into clothing. Discard clothing or other absorbent materials that have been drenched or heavily contaminated with this product's concentrate. Do not reuse them. Prolonged or repeated skin contact may cause allergic reactions in some individuals.

If this method is adopted, add BUSAN 1264 continuously for either the single period of 8 hours during every 24 hours or for two separate periods of 4 hours during every 24 hours. Meier BUSAN 1264 to the recirculated backwater at a rate of 7 to 8.5 ounces for each ton of paper produced during the dosing period.

Detergent Concentrates: BUSAN 1264 should be added to the concentrate, or in the final wash to ensure that the use of the detergent is added to the concentrate. The full concentration should not be less than 0.5% BUSAN 1264. To prevent the development of resistant organisms, which is less likely to occur when the shock dosing method is used.

If this preferred method is adopted, add 2.5 to 9 ounces of BUSAN 1264 for each ton of paper produced per day as a single shock dose, the actual quantity to be determined by trial and error. Because this ensures that a high concentration of BUSAN 1264 is present in the system for several hours. If a slime control agent is added by continuous methods over periods of several hours, its concentration in the system at all times is low. This can lead to the development of resistant organisms, which is less likely to occur when the shock dosing method is used.

If this preferred method is adopted, add 2.5 to 9 ounces of BUSAN 1264 for each ton of paper produced per day as a single shock dose, the actual quantity to be determined by trial and error. Because this ensures that a high concentration of BUSAN 1264 is present in the system for several hours. If a slime control agent is added by continuous methods over periods of several hours, its concentration in the system at all times is low. This can lead to the development of resistant organisms, which is less likely to occur when the shock dosing method is used.

If this method is adopted, add BUSAN 1264 continuously for either the single period of 8 hours during every 24 hours or for two separate periods of 4 hours during every 24 hours. Meier BUSAN 1264 to the recirculated backwater at a rate of 7 to 8.5 ounces for each ton of paper produced during the dosing period.

Detergent Concentrates: BUSAN 1264 should be added to the concentrate, or in the final wash to ensure that the use of the detergent is added to the concentrate. The full concentration should not be less than 0.5% BUSAN 1264. To prevent the development of resistant organisms, which is less likely to occur when the shock dosing method is used.

If this method is adopted, add BUSAN 1264 continuously for either the single period of 8 hours during every 24 hours or for two separate periods of 4 hours during every 24 hours. Meier BUSAN 1264 to the recirculated backwater at a rate of 7 to 8.5 ounces for each ton of paper produced during the dosing period.

Detergent Concentrates: BUSAN 1264 should be added to the concentrate, or in the final wash to ensure that the use of the detergent is added to the concentrate. The full concentration should not be less than 0.5% BUSAN 1264. To prevent the development of resistant organisms, which is less likely to occur when the shock dosing method is used.

If this preferred method is adopted, add 2.5 to 9 ounces of BUSAN 1264 for each ton of paper produced per day as a single shock dose, the actual quantity to be determined by trial and error. Because this ensures that a high concentration of BUSAN 1264 is present in the system for several hours. If a slime control agent is added by continuous methods over periods of several hours, its concentration in the system at all times is low. This can lead to the development of resistant organisms, which is less likely to occur when the shock dosing method is used.

If this preferred method is adopted, add 2.5 to 9 ounces of BUSAN 1264 for each ton of paper produced per day as a single shock dose, the actual quantity to be determined by trial and error. Because this ensures that a high concentration of BUSAN 1264 is present in the system for several hours. If a slime control agent is added by continuous methods over periods of several hours, its concentration in the system at all times is low. This can lead to the development of resistant organisms, which is less likely to occur when the shock dosing method is used.

If this preferred method is adopted, add 2.5 to 9 ounces of BUSAN 1264 for each ton of paper produced per day as a single shock dose, the actual quantity to be determined by trial and error. Because this ensures that a high concentration of BUSAN 1264 is present in the system for several hours. If a slime control agent is added by continuous methods over periods of several hours, its concentration in the system at all times is low. This can lead to the development of resistant organisms, which is less likely to occur when the shock dosing method is used.

If this preferred method is adopted, add 2.5 to 9 ounces of BUSAN 1264 for each ton of paper produced per day as a single shock dose, the actual quantity to be determined by trial and error. Because this ensures that a high concentration of BUSAN 1264 is present in the system for several hours. If a slime control agent is added by continuous methods over periods of several hours, its concentration in the system at all times is low. This can lead to the development of resistant organisms, which is less likely to occur when the shock dosing method is used.

If this preferred method is adopted, add 2.5 to 9 ounces of BUSAN 1264 for each ton of paper produced per day as a single shock dose, the actual quantity to be determined by trial and error. Because this ensures that a high concentration of BUSAN 1264 is present in the system for several hours. If a slime control agent is added by continuous methods over periods of several hours, its concentration in the system at all times is low. This can lead to the development of resistant organisms, which is less likely to occur when the shock dosing method is used.

If this preferred method is adopted, add 2.5 to 9 ounces of BUSAN 1264 for each ton of paper produced per day as a single shock dose, the actual quantity to be determined by trial and error. Because this ensures that a high concentration of BUSAN 1264 is present in the system for several hours. If a slime control agent is added by continuous methods over periods of several hours, its concentration in the system at all times is low. This can lead to the development of resistant organisms, which is less likely to occur when the shock dosing method is used.

If this preferred method is adopted, add 2.5 to 9 ounces of BUSAN 1264 for each ton of paper produced per day as a single shock dose, the actual quantity to be determined by trial and error. Because this ensures that a high concentration of BUSAN 1264 is present in the system for several hours. If a slime control agent is added by continuous methods over periods of several hours, its concentration in the system at all times is low. This can lead to the development of resistant organisms, which is less likely to occur when the shock dosing method is used.

If this preferred method is adopted, add 2.5 to 9 ounces of BUSAN 1264 for each ton of paper produced per day as a single shock dose, the actual quantity to be determined by trial and error. Because this ensures that a high concentration of BUSAN 1264 is present in the system for several hours. If a slime control agent is added by continuous methods over periods of several hours, its concentration in the system at all times is low. This can lead to the development of resistant organisms, which is less likely to occur when the shock dosing method is used.