ENVIRONMENTAL HAZARDS

For terrestrial uses: Do not apply directly to water or to areas where surface water is present or to intertidal areas below the mean high water mark. Do not contaminate water when disposing of equipment washwater or treated water.

STORAGE AND DISPOSAL

Do not contaminate water, food, or feed by storage or disposal. Pesticide disposal: Store in a dry area inaccessible to children. Store in original container only. Keep container closed when not in use. Store at temperatures below 77°F (25°C).

Pesticide Disposal: Works resulting from the use of this product must be disposed of on site or at an approved waste disposal facility.

Container Handling: Nonrefillable Container: Do not reuse or refill this container. Completely empty bag into container. Do not reuse or refill this nonrefillable waste disposal facility. If burned, incineration, or if allowed by state and/or local authorities, by burning. If burned, disposal of equipment washwater or treated water.

Waste Disposal

Nonrefillable waste disposal facility. Disposed of on site or at an approved waste disposal facility. Wastes resulting from the use of this product must be disposed of on site or at an approved waste disposal facility. When handlers use closed systems, enclosed cabs, or aircraft in a manner that meets the requirements listed in the Worker Protection Standard (WPS) for agricultural pesticides (40 CFR §170.145-145.6), the handler PPE requirements may be reduced or modified as specified in the WPS.

PPE

For terrestrial uses: PPE should be selected and used in an emergency, such as a spill or equipment breakdown.

FIRST AID

If swallowed: Do not induce vomiting. If person is unconscious, do not induce vomiting. Call a poison center or doctor for further treatment advice. Have the product container or label with you when calling a poison control center or doctor. If in eyes: Hold eye open and rinse slowly and gently with water for 15 to 20 minutes. Remove contact lenses, if present, after the first 5 minutes, and then continue rinsing eye. Call a poison center or doctor for further treatment advice.

ENVIRONMENTAL HAZARDS

To Reduce Occurrence and Severity of Plant Disease on Lister Crops Grown Outdoors or Grown Under Cover in Greenhouses, Shadehouses, or Other Cover

ACTIVE INGREDIENT:

<table>
<thead>
<tr>
<th>Bacterial isolate</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>isolate J*</td>
<td>40.0%</td>
</tr>
<tr>
<td>Bacillus mycoides</td>
<td>60.0%</td>
</tr>
</tbody>
</table>

TOTAL: 100.0%

OTHER INGREDIENTS:

<table>
<thead>
<tr>
<th>Other Ingredient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Equivalent to a minimum of 30 billion (3x10^10) viable spores/g of product.</td>
<td></td>
</tr>
</tbody>
</table>

USER SAFETY RECOMMENDATIONS

Use clean, dry, washable clothing when handling this product. Do not apply this product when wet. Do not eat, drink, or smoke while using this product. Do not contaminate water, food, or feed by storage or disposal.

PRECAUTIONARY STATEMENTS

HAZARDS TO HUMANS AND DOMESTIC ANIMALS

CAUTION: Harmful if inhaled. Causes moderate eye irritation. Avoid breathing dust or spray mist. Avoid contact with eyes and clothing. Wear protective eyewear. Wash thoroughly with soap and water after handling and before eating, drinking, chewing gum, using tobacco, or using the toilet. Remove and wash contaminated clothing before reuse.

ENGINEERING CONTROLS STATEMENTS

When handlers use closed systems, enclosed cabs, or aircraft in a manner that meets the requirements listed in the Worker Protection Standard (WPS) for agricultural pesticides (40 CFR §170.145-145.6), the handler PPE requirements may be reduced or modified as specified in the WPS.
LifeGard™ WG should be applied preventatively, before disease is observed in the field. Initial triggering of plant defense response occurs within minutes of application, but application timing:

Prepare only the amount of spray mix that is required for the immediate operation. Do not allow the mixture to stand overnight in the spray tank.

LifeGard™ WG is a wettable granular (WG) formulation that must be mixed with water and applied as a foliar spray. Mix the specified amount of LifeGard™ WG in clean water when disposing of equipment washwater or rinsate.

Personal Protective Equipment

Applicants and other handlers must wear a long-sleeved shirt and long pants, socks, shoes, waterproof gloves, and protective eyewear; and use a NIOSH-approved particulate respirator with any N-95, or N-95 filter with NIOSH approval number prefix TC-E, or a NIOSH-approved powered air purifying respirator with an HE filter with NIOSH approval number prefix TC-21C. (Repeated exposure to high concentrations of microbial proteins can cause allergic sensitization.)

Follow the manufacturer’s instructions for cleaning and maintaining equipment. If no such instructions were available, use detergent and hot water. Keep wash and separate water separately from other laundry.

User Safety Recommendations

Users should remove clothing/PPE immediately if pesticide gets inside. Then wash thoroughly and put on clean clothing. Users should remove PPE immediately after handling this product. Wash the outside of gloves before removing. As soon as possible, wash thoroughly and change into clean clothing.

Engineering controls

When handlers use closed systems, enclosed cars, or aircraft in a manner that meets the requirements listed in the Worker Protection Standard (WPS) for agricultural purposes, the amount of pesticide allowed in the handler’s PPE may be reduced or modified as specified in the WPS.

It is important to wear PPE properly because a closed system is being used. Handlers must be provided all PPE specified above for “applicants and other handlers” and have such PPE immediately available for use in an emergency, such as a spill or equipment breakdown.

Environmental hazards

For terrestrial uses: Do not apply directly to water or to areas where surface water is present or to intertidal areas below the mean high water mark. Do not contaminate water when disposing of equipment washwater or rinsate.

Direct uses: It is a violation of Federal law to use this product in a manner inconsistent with its labeling. These use directions must be in the possession of the user at the time of pesticide application.

Engineering controls

If using dry measure rather than weight, the volume measure:

- Almond: 3 tbsp
- Citrus: 3 tsp
- Eggplant: 3 tbsp
- Grapefruit, Tangelo, Tangerine: 1 cup
- Kohlrabi, and other brassica vegetables: include plant growth inhibitors (as grown for seed production):
- Broccoli, Brussels sprouts, Cabbage, Cauliflower, Kohlrabi, and other brassica vegetables: include plant growth inhibitors (as grown for seed production):
- Safflower, Sunflower, and all other mustard: 3 tbsp
- Watermelon:
- Alfalfa clavata (Alternaria alternata)
- Ascochyta pisum (Aphanomyces euteiches)
- Bacillus pumilus (Pseudomonas syringae pv. tomato)
- Botrytis cinerea (Botrytis cinerea)
- B. cinerea (B. cinerea)
- Cercospora beticola (Cercospora beticola)
- Colletotrichum lagenarium (Colletotrichum lagenarium)
- Erysiphe cichoracearum (Erysiphe cichoracearum)
- Glomerella cingulata (Halyoperonospora graminis)
- Alternaria alternata (Alternaria alternata)
- Ascochyta pisum (Aphanomyces euteiches)
- Bacillus pumilus (Pseudomonas syringae pv. tomato)
- Botrytis cinerea (Botrytis cinerea)
- Cercospora beticola (Cercospora beticola)
- Colletotrichum lagenarium (Colletotrichum lagenarium)
- Erysiphe cichoracearum (Erysiphe cichoracearum)
- Glomerella cingulata (Halyoperonospora graminis)
- Alternaria alternata (Alternaria alternata)
- Ascochyta pisum (Aphanomyces euteiches)
- Bacillus pumilus (Pseudomonas syringae pv. tomato)
- Botrytis cinerea (Botrytis cinerea)
- Cercospora beticola (Cercospora beticola)
- Colletotrichum lagenarium (Colletotrichum lagenarium)
- Erysiphe cichoracearum (Erysiphe cichoracearum)
- Glomerella cingulata (Halyoperonospora graminis)
- Alternaria alternata (Alternaria alternata)
- Ascochyta pisum (Aphanomyces euteiches)
- Bacillus pumilus (Pseudomonas syringae pv. tomato)
- Botrytis cinerea (Botrytis cinerea)
- Cercospora beticola (Cercospora beticola)
- Colletotrichum lagenarium (Colletotrichum lagenarium)
- Erysiphe cichoracearum (Erysiphe cichoracearum)
- Glomerella cingulata (Halyoperonospora graminis)
- Alternaria alternata (Alternaria alternata)
- Ascochyta pisum (Aphanomyces euteiches)
- Bacillus pumilus (Pseudomonas syringae pv. tomato)
- Botrytis cinerea (Botrytis cinerea)
- Cercospora beticola (Cercospora beticola)
- Colletotrichum lagenarium (Colletotrichum lagenarium)
- Erysiphe cichoracearum (Erysiphe cichoracearum)
- Glomerella cingulata (Halyoperonospora graminis)
- Alternaria alternata (Alternaria alternata)
- Ascochyta pisum (Aphanomyces euteiches)
- Bacillus pumilus (Pseudomonas syringae pv. tomato)
- Botrytis cinerea (Botrytis cinerea)
- Cercospora beticola (Cercospora beticola)
- Colletotrichum lagenarium (Colletotrichum lagenarium)
- Erysiphe cichoracearum (Erysiphe cichoracearum)
- Glomerella cingulata (Halyoperonospora graminis)
- Alternaria alternata (Alternaria alternata)
- Ascochyta pisum (Aphanomyces euteiches)
- Bacillus pumilus (Pseudomonas syringae pv. tomato)
- Botrytis cinerea (Botrytis cinerea)
- Cercospora beticola (Cercospora beticola)
- Colletotrichum lagenarium (Colletotrichum lagenarium)
- Erysiphe cichoracearum (Erysiphe cichoracearum)
- Glomerella cingulata (Halyoperonospora graminis)
- Alternaria alternata (Alternaria alternata)
- Ascochyta pisum (Aphanomyces euteiches)
- Bacillus pumilus (Pseudomonas syringae pv. tomato)
- Botrytis cinerea (Botrytis cinerea)
- Cercospora beticola (Cercospora beticola)
- Colletotrichum lagenarium (Colletotrichum lagenarium)
- Erysiphe cichoracearum (Erysiphe cichoracearum)
- Glomerella cingulata (Halyoperonospora graminis)
- Alternaria alternata (Alternaria alternata)
- Ascochyta pisum (Aphanomyces euteiches)
- Bacillus pumilus (Pseudomonas syringae pv. tomato)
- Botrytis cinerea (Botrytis cinerea)
- Cercospora beticola (Cercospora beticola)
- Colletotrichum lagenarium (Colletotrichum lagenarium)
- Erysiphe cichoracearum (Erysiphe cichoracearum)
- Glomerella cingulata (Halyoperonospora graminis)
- Alternaria alternata (Alternaria alternata)
- Ascochyta pisum (Aphanomyces euteiches)
- Bacillus pumilus (Pseudomonas syringae pv. tomato)
- Botrytis cinerea (Botrytis cinerea)
- Cercospora beticola (Cercospora beticola)
- Colletotrichum lagenarium (Colletotrichum lagenarium)
- Erysiphe cichoracearum (Erysiphe cichoracearum)
- Glomerella cingulata (Halyoperonospora graminis)
- Alternaria alternata (Alternaria alternata)
- Ascochyta pisum (Aphanomyces euteiches)
- Bacillus pumilus (Pseudomonas syringae pv. tomato)
- Botrytis cinerea (Botrytis cinerea)
- Cercospora beticola (Cercospora beticola)
- Colletotrichum lagenarium (Colletotrichum lagenarium)
- Erysiphe cichoracearum (Erysiphe cichoracearum)
- Glomerella cingulata (Halyoperonospora graminis)
- Alternaria alternata (Alternaria alternata)
- Ascochyta pisum (Aphanomyces euteiches)
- Bacillus pumilus (Pseudomonas syringae pv. tomato)
- Botrytis cinerea (Botrytis cinerea)
- Cercospora beticola (Cercospora beticola)
- Colletotrichum lagenarium (Colletotrichum lagenarium)
- Erysiphe cichoracearum (Erysiphe cichoracearum)
- Glomerella cingulata (Halyoperonospora graminis)
- Alternaria alternata (Alternaria alternata)
- Ascochyta pisum (Aphanomyces euteiches)
- Bacillus pumilus (Pseudomonas syringae pv. tomato)
- Botrytis cinerea (Botrytis cinerea)
- Cercospora beticola (Cercospora beticola)
- Colletotrichum lagenarium (Colletotrichum lagenarium)
- Erysiphe cichoracearum (Erysiphe cichoracearum)
- Glomerella cingulata (Halyoperonospora graminis)
- Alternaria alternata (Alternaria alternata)
- Ascochyta pisum (Aphanomyces euteiches)
- Bacillus pumilus (Pseudomonas syringae pv. tomato)
- Botrytis cinerea (Botrytis cinerea)
- Cercospora beticola (Cercospora beticola)
- Colletotrichum lagenarium (Colletotrichum lagenarium)
- Erysiphe cichoracearum (Erysiphe cichoracearum)
- Glomerella cingulata (Halyoperonospora graminis)
- Alternaria alternata (Alternaria alternata)
- Ascochyta pisum (Aphanomyces euteiches)
- Bacillus pumilus (Pseudomonas syringae pv. tomato)
- Botrytis cinerea (Botrytis cinerea)
- Cercospora beticola (Cercospora beticola)
- Colletotrichum lagenarium (Colletotrichum lagenaria
Apply 1 oz (30 grams) of LifeGard™ WG in 5 gallons of water per acre.

Aerial application rate:

Make the first application within 60-65 days after planting. Repeat application at 14-day intervals as long as aphid vectors are present and conditions are favorable for disease development.

Apply as a foliar spray in sufficient water to provide thorough and uniform coverage of the crop canopy.

Ground application rate:

Refer to the Rate Table

Mix the specified amount (listed below) of LifeGard™ WG in clean water with sufficient agitation to maintain a uniform suspension in the spray or mixing tank.

Waste resulting from the use of this product must be disposed of on site or at an approved waste disposal facility.

Containers Handling: Nonrefillable container. Do not reuse or refill this container. Completely empty bag into application equipment. Then offer for recycling if available, or dispose of empty bag in a sanitary landfill or by incineration, or if allowed by state and local authorities, by burning. If burned, stay out of smoke.

To REDUCE INFECTION BY POTATO VIRUS Y (PVY) IN POTATOES GROWN FOR SEED:

Mix the specified amount (labeled below) of LifeGard™ WG in clean water with sufficient agitation to maintain a uniform suspension in the spray or mixing tank. Apply as a foliar spray. LifeGard™ WG may be applied at a rate of 4 oz per 100 gallons of water to provide thorough and uniform coverage of the crop canopy.

Make the first application within 40–60 days after planting. Repeat application at 14-day intervals as long as aphids are present and conditions are favorable for infection. LifeGard™ WG may be applied up to five (5) times per crop cycle. LifeGard™ WG may be tank-mixed or applied in rotation with chemical fungicides and insecticides used as part of standard pest management practices. Best results may occur when LifeGard™ WG is used in conjunction with a "no gap" insecticide program for control of aphids and PVY. Observe the most restrictive of the labeling limitations and precautions of all products used in mixtures. LifeGard™ WG may be tank mixed with petroleum-based (paraffin)-oil based pesticides, as long as an adequate water volume (at least 2% of the spray volume) in the final spray mix. Effectiveness of LifeGard™ WG may be reduced at all concentrations higher than 2%.

Ground application rate: Apply 2 or 4 oz (60 or 120 grams) of LifeGard™ WG in 15 to 30 gallons of water per acre.

Aerial application rate: Apply 1 or 2 oz (30 or 60 grams) of LifeGard™ WG in 5 gallons of water per acre.

CHEMIGATION INSTRUCTIONS

1. Chemigation systems connected to public water systems must contain a functional, normally closed, sole-pump (e.g., diaphragm pump) effectively designed and constructed of materials that are compatible with pesticides and capable of being fitted with a system shut-down solenoid-operated valve located on the intake side of the injection pump and connected to the system interlock controls. Fluid from being withdrawn from the reservoir tank when the injection system is automatically or manually shut down.

2. The pesticide injection pipeline must contain a functional, automatic, quick-closing check valve to prevent the flow of fluid back toward the injection pump.

3. The pesticide injection pipeline must contain a functional, normally closed, solenoid-operated valve located on the intake side of the injection pump and connected to the system interlock controls. Fluid from being withdrawn from the reservoir tank when the injection system is automatically or manually shut down.

4. The system must contain functional interlocking controls to automatically shut off the pesticide injection pump when the water pump motor stops or, in cases where there is no water pump, when the water pressure decreases to the point where fluid flow is likely to occur. Failure of the system’s check valve to prevent the backflow of fluid toward the injection pump is cause for system shut-down.

5. Systems must use a metering pump, such as a positive displacement injection pump, to introduce LifeGard™ WG into a reservoir tank prior to pesticide introduction. There shall be a complete physical break (air gap) between the exit end of the pump and the top or over flow rim of the reservoir tank at least twice the inside diameter of the pipe.

6. Do not apply when wind speed favors drift beyond the area intended for treatment.

7. Systems must use a metering pump, such as a positive displacement injection pump, to introduce LifeGard™ WG into a reservoir tank prior to pesticide introduction. There shall be a complete physical break (air gap) between the exit end of the pump and the top or overflow rim of the reservoir tank at least twice the inside diameter of the pipe.

8. Do not connect an irrigation system (including greenhouse systems) used for pesticide application to a public water system unless the pesticide label prescribed safety devices for public water systems are in place.

CHEMIGATION SYSTEMS

A person knowledgeable of the chemigation system and responsible for its operation, or under the supervision of the responsible person, shall shut the system down and make necessary adjustments should the need arise.

Public water system chemigation:

Public water system means a system for the provision to the public of piped water for human consumption if such system has at least 15 service connections or regu-

larly serves an average of at least 25 individuals only at 60 days or less out of the year.

CHEMIGATION SYSTEMS

1. Chemigation systems connected to public water systems must contain a functional, normally closed, sole-pump (e.g., diaphragm pump) effectively designed and constructed of materials that are compatible with pesticides and capable of being fitted with a system solenoid-operated valve located on the intake side of the injection pump and connected to the system interlock controls. Fluid from being withdrawn from the reservoir tank when the injection system is automatically or manually shut down.

2. The pesticide injection pipeline must contain a functional, automatic, quick-closing check valve to prevent the flow of fluid back toward the injection pump.

3. The pesticide injection pipeline must contain a functional, normally closed, solenoid-operated valve located on the intake side of the injection pump and connected to the system interlock controls. Fluid from being withdrawn from the reservoir tank when the injection system is automatically or manually shut down.

4. The system must contain functional interlocking controls to automatically shut off the pesticide injection pump when the water pump motor stops or, in cases where there is no water pump, when the water pressure decreases to the point where fluid flow is likely to occur. Failure of the system’s check valve to prevent the backflow of fluid toward the injection pump is cause for system shut-down.

5. Systems must use a metering pump, such as a positive displacement injection pump, to introduce LifeGard™ WG into a reservoir tank prior to pesticide introduction. There shall be a complete physical break (air gap) between the exit end of the pump and the top or overflow rim of the reservoir tank at least twice the inside diameter of the pipe.

6. Do not apply when wind speed favors drift beyond the area intended for treatment.

7. Systems must use a metering pump, such as a positive displacement injection pump, to introduce LifeGard™ WG into a reservoir tank prior to pesticide introduction. There shall be a complete physical break (air gap) between the exit end of the pump and the top or overflow rim of the reservoir tank at least twice the inside diameter of the pipe.

8. Do not connect an irrigation system (including greenhouse systems) used for pesticide application to a public water system unless the pesticide label prescribed safety devices for public water systems are in place.

CHEMIGATION SYSTEMS

A person knowledgeable of the chemigation system and responsible for its operation, or under the supervision of the responsible person, shall shut the system down and make necessary adjustments should the need arise.